National Repository of Grey Literature 13 records found  1 - 10next  jump to record: Search took 0.01 seconds. 
Recent Trends in Research and Development of Non-toxic Small Calibre Bullets
Macháček, Tomáš ; Komenda,, Jan (referee) ; Klakurková, Lenka (advisor)
This thesis focuses on finding equivalent replacement of toxic lead used in bullets with different non-toxic material. Bullets produced from copper, brass, zinc and lead were tested. The work contains information about chemical composition, a macro and mikro documentation and the hardness values of each bullet. Methods of light microscopy, scanning electron microscopy and microhardness measurements were used for this study.
Investigation of Miniature Devices for Collection of Hydride Forming Elements in Atomic Spectrometry Methods
Krejčí, Pavel ; Čelechovská, Olga (referee) ; Janoš, Pavel (referee) ; Otruba, Vítězslav (referee) ; Dočekal, Bohumil (advisor)
Capability of a prototype of miniature collection device based on a strip of the molybdenum foil for collecting hydride forming elements (As, Se, Sb and Bi) was studied. The device was combined with a miniature hydrogen diffusion flame for detection by atomic absorption spectrometry. The conditions for trapping and subsequent vaporization of analytes of interest were optimized. A twin-channel hydride generation system was used for study of mutual interference effects of co-generated hydride forming elements. The influence of modification of the molybdenum surface with noble metals - Rh, Pt and Ir on trapping and vaporization processes was also studied and changes of microstructure of the foil surface after modification were investigated using scanning electron microscope equipped with energy dispersive x-ray analyzer and electron backscattered diffraction system. Complementary radiotracer and radiography experiments were performed in order to determine trapping efficiency and to assess the spatial distribution of collected analytes within the device. Practical application of the method was demonstrated on determination of antimony in water samples at trace level. Possibility of multi-element analysis was demonstrated by combining the collection device with atomization and excitation of the analyte in microwave induced plasma and with detection by atomic emission spectrometry method. The results of the experiments proved that tested miniature collection device is capable of trapping analytes that form volatile hydrides. This device can be coupled to various types of atomizers, typically used in spectrometry methods. Thus, very sensitive and specific detection of hydride forming elements can be performed.
Thermal aging of lead-free low-temperature joints
Jansa, Vojtěch ; Šandera, Josef (referee) ; Adámek, Martin (advisor)
The aim of this masterś thesis is to investigate properties of lead-free low-temperature solders after termal aging. The theoretical part is focused on various types of lead - free solders, pastes used for the manufacture of electrical circuits by thick-film technology and methods of testing the properties of the soldered joints. The practical part deals with the design and production of test substrates for testing the solder joints formed between the SMD component and the ceramic substrate. Two solder bismuth-containing solder was selected for testing, the SAC solder was selected as the reference. After aging with temperature cycling from -30 ° C to 115 ° C, the data obtained by testing the mechanical strength of the solder joint by the shear test is evaluated.
Electrochemical generation of tellurium and bismuth hydrides for AAS
Resslerová, Tina ; Hraníček, Jakub (advisor) ; Šíma, Jan (referee)
Tellurium and bismuth are non-biogenous elements, which can be accumulated in human body. The aim of this work is focused on the determination of these elements by the electrochemical hydride generation with non-membrane electrolytic cell with quartz tube - atomic absorption spectrometry. The first step of the work was to optimize parameters for the continuous setup measurements and to obtain its figures of merit. After this, the arrangement with most suitable conditions for determination of these elements was converted to the flow injection setup (FIA) and all experimental parameters were again optimized and its figures of merit were obtained. The conditions of hydride generation were studied for platinum, lead and silver cathodes with hydrochloric and sulphuric acids and their sodium salts as electrolytes. The optimizations of the FIA setup were performed on platinum cathode in hydrochloric acid for bismuth and on lead cathode in sulphuric acid for tellurium. The limit of detection achieved for the generation of tellurium hydride was 1.1 ppm with a linear range up to 20 ppm; for the bismuth hydride the limit of detection was 9.5 ppm and limit of linearity 50 ppm. Keywords Bismuth, tellurium, electrochemical hydride generation, atomic absorption spectroscopy, flow injection analysis
Modular design for in-atomizer preconcentration of hydride forming elements with AAS detection
Novák, Petr ; Kratzer, Jan (advisor) ; Korunová, Vlasta (referee)
Modular design of hydride trap-and-atomizer device for AAS is constructed and tested. Modular design enables to test different preconcentration surfaces easily. Efficient in- atomizer preconcentration allows to reach detection limits of hydride forming elements at ultratrace levels. Bismuth and arsenic were chosen as model analytes and their preconcentration efficiencies were quantified employing quartz and sapphire as preconcentration surfaces. The results reached in the modular design were compared to those found previously in the compact quartz trap-and-atomizer device. The performance of the modular design is fully comparable with that of compact trap-and-atomizer design. Modular design can thus be employed for testing of novel preconcentration surfaces.
Hydride generation of bismuth for atomic absorption and fluorescence spectrometry.
Kolrosová, Marta ; Musil, Stanislav (advisor) ; Nováková, Eliška (referee)
This master's thesis deals with the optimization of conditions of chemical hydride generation (HG) of bismuth, its atomization and detection by atomic absorption spectrometry (AAS) and atomic fluorescence spectrometry (AFS). Two types of atomizers were used for atomization of volatile species, a miniature diffusion flame for AAS as well as for AFS and a flame-in-gas-shield atomizer for AFS. At first, the parameters of HG in a flow injection mode were optimized - the concentration of hydrochloric acid, the concentration of sodium borohydride and the volume of the reaction coil. Subsequently, the atomization conditions were optimized using both atomizers. The parameters optimized were hydrogen fraction, total gas flow rate and observation height. Due to the more complicated construction of the FIGS atomizer, more parameters were studied, such as the oxygen flow rate through the capillary and the flow rate of shielding argon required for shielding the free atoms. A special part of the thesis dealt with the optimization of the optical path of the atomic fluorescence spectrometer, the selection of an interference filter and the optimization of a power supply of an electrodeless discharge lamp. It was found that under optimum conditions of generation, atomization and detection excellent detection limits...
Thermal aging of lead-free low-temperature joints
Jansa, Vojtěch ; Šandera, Josef (referee) ; Adámek, Martin (advisor)
The aim of this masterś thesis is to investigate properties of lead-free low-temperature solders after termal aging. The theoretical part is focused on various types of lead - free solders, pastes used for the manufacture of electrical circuits by thick-film technology and methods of testing the properties of the soldered joints. The practical part deals with the design and production of test substrates for testing the solder joints formed between the SMD component and the ceramic substrate. Two solder bismuth-containing solder was selected for testing, the SAC solder was selected as the reference. After aging with temperature cycling from -30 ° C to 115 ° C, the data obtained by testing the mechanical strength of the solder joint by the shear test is evaluated.
The Use of Interactive Whiteboard in Inorganic Chemistry Teaching (Secondary Education) - Group 15 of the Periodic Table of Elements
Matušková, Eva ; Teplý, Pavel (advisor) ; Klímová, Helena (referee)
The subject of this thesis was creating of teaching material for an interactive whiteboard using ActivInspire program. The material was created in a form of interactive presentations designed to be used in chemistry lessons at secondary schools. The theme of these presentations was the 15th group of the periodic table of elements. The thesis also includes a description of the way the presentations were made and instructions for teachers how to work with them.
Electrochemical generation of tellurium and bismuth hydrides for AAS
Resslerová, Tina ; Hraníček, Jakub (advisor) ; Šíma, Jan (referee)
Tellurium and bismuth are non-biogenous elements, which can be accumulated in human body. The aim of this work is focused on the determination of these elements by the electrochemical hydride generation with non-membrane electrolytic cell with quartz tube - atomic absorption spectrometry. The first step of the work was to optimize parameters for the continuous setup measurements and to obtain its figures of merit. After this, the arrangement with most suitable conditions for determination of these elements was converted to the flow injection setup (FIA) and all experimental parameters were again optimized and its figures of merit were obtained. The conditions of hydride generation were studied for platinum, lead and silver cathodes with hydrochloric and sulphuric acids and their sodium salts as electrolytes. The optimizations of the FIA setup were performed on platinum cathode in hydrochloric acid for bismuth and on lead cathode in sulphuric acid for tellurium. The limit of detection achieved for the generation of tellurium hydride was 1.1 ppm with a linear range up to 20 ppm; for the bismuth hydride the limit of detection was 9.5 ppm and limit of linearity 50 ppm. Keywords Bismuth, tellurium, electrochemical hydride generation, atomic absorption spectroscopy, flow injection analysis
Modular design for in-atomizer preconcentration of hydride forming elements with AAS detection
Novák, Petr ; Kratzer, Jan (advisor) ; Korunová, Vlasta (referee)
Modular design of hydride trap-and-atomizer device for AAS is constructed and tested. Modular design enables to test different preconcentration surfaces easily. Efficient in- atomizer preconcentration allows to reach detection limits of hydride forming elements at ultratrace levels. Bismuth and arsenic were chosen as model analytes and their preconcentration efficiencies were quantified employing quartz and sapphire as preconcentration surfaces. The results reached in the modular design were compared to those found previously in the compact quartz trap-and-atomizer device. The performance of the modular design is fully comparable with that of compact trap-and-atomizer design. Modular design can thus be employed for testing of novel preconcentration surfaces.

National Repository of Grey Literature : 13 records found   1 - 10next  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.